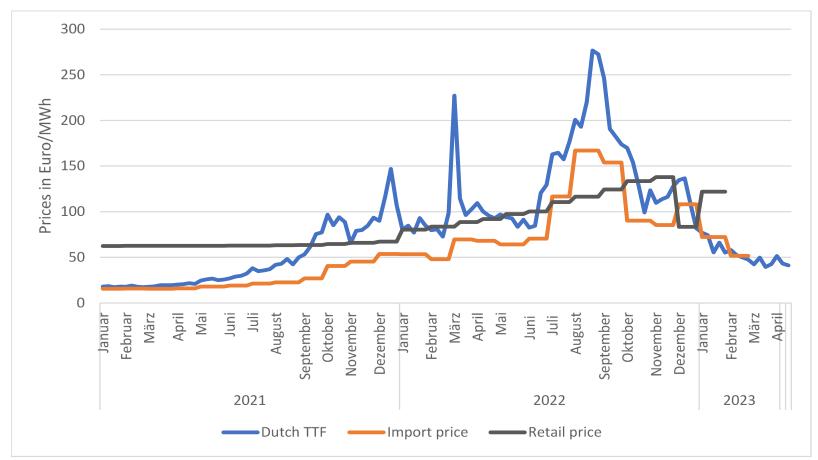


The Energy Crisis in Germany and the Design of a Resilient Energy System

Tom Krebs University of Mannheim


Motivation and Summary

- Energy price shocks matter: The fossil energy crisis 2022 in Germany was an economic crisis with large social costs
- We need to do better in the future: The future renewable energy system should be more resilient than the current, fossil-based system
- **Resilient energy system 1:** The social gains from providing sufficient storage capacity for renewable energy by far exceed the costs of building it
- **Resilient energy system 2:** Public insurance against future price risk for renewable energy producers can speed up the process of building a renewable energy system (no slides today)

Natural Gas (Energy) Price Shock

Sources: Dutch TTF prices from Statista; import prices and retail prices from Federal Statistical Office (Statistisches Bundesamt).

Energy Crisis

- What is the economic and social cost of the energy price shock depicted in the previous figure?
- **Possible answer (often heard):** German GDP in 2022 barely declined (barely a recession) and therefore the energy price shock had only little economic impact
- **Problem 1:** We need to compute the difference between actual GDP and GDP without the energy price shock
- **Problem 2:** What matters for most people is real labor income (real wages)

Energy Crisis

Table 1. One-year output and wage losses in Germany for three economic crises

	Output loss	Real wage loss
Energy crisis 2022	4.0 %	5.0 %
Covid-19 crisis 2020	2.5 %	2.2 %
Financial crisis 2009	5.8 %	0.1 %

 GDP and real wages in the economy without crisis are based on the beforecrisis consensus forecasts of four economic research institutes (Ifo, IfW, IWH, RWI)

Resilient Energy System

6

- The future energy system will be based to a large extent on the production of electricity from renewable sources (wind and solar)
- The future, renewable energy system should be more resilient than the current, fossil-fuel energy system – the energy crisis
 2022/23 has already cost Germany 100 billion euro
- A resilient, renewable energy system requires sufficient storage capacity for the times when both wind and solar produce little electricity
- From a macro/social perspective, we should build a lot of storage capacity to avoid the loss of 100 billion euro – reduce the probability of an energy crisis to (almost) zero

Resilient Energy System

- Sinn (2017) entitled "Buffering volatility: A study on the limits of Germany's energy revolution" argues that Germany needs storage capacity of 20 terawatt-hour to avoid energy shortage and that this is a problem
- One can provide "storage capacity" of 20 terawatt-hour using hydrogen power plants -- initially built as hydrogen-ready gas power plants – that are only used as reserves and would have an investment cost (capex) of 20 billion euro
- Since 20 < 100, the title of Sinn (2017) could also be "A study on the small macroeconomic cost of a resilient, renewable energy system"